Name	Period

AP Chemistry Chapter Test Bonding

Part I: Multiple Choice (2 points each)

 1. ___
 2. ___
 3. ___
 4. ___
 5. ___

 6. ___
 7. ___
 8. ___
 9. ___
 10. ___

The following is a table of Pauling Electronegativity values.

2.1																
Н		_														
1.0	1.5											2.0	2.5	3.0	3.5	4.0
Li	Be											В	C	N	O	F
0.9	1.2											1.5	1.8	2.1	2.5	3.0
Na	Mg											Al	Si	P	S	C1
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I
0.7	0.9		1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At
0.7	0.9			<u> </u>	<u> </u>					<u> </u>	•	<u> </u>	<u> </u>			
Fr	Ra															

Part II: Free Response Questions

1 The compounds SF₄ and CsF react to form an ionic compound according to the following equation.

$$SF_4 + CsF \rightarrow CsSF_5$$

- (i) Draw a complete Lewis structure for the SF₅⁻ anion in CsSF₅.
- (ii) Identify the type of hybridization exhibited by sulfur in the SF_5^- anion.
- (iii) Identify the geometry of the SF_5^- anion that is consistent with the Lewis structure drawn in part (b)(i).
- (iv) Identify the oxidation number of sulfur in the compound $CsSF_5$.

2) Xenon can react with oxygen and fluorine to form compounds such as XeO ₃ and XeF ₄ Draw the complete Lewis electron-dot diagram for each of the molecules.	,•

3) Predict whether the XeO₃ molecule is polar or nonpolar. Justify your prediction.

4) In the SO₂ molecule, both of the bonds between sulfur and oxygen have the same length. Explain this observation, supporting your explanation by drawing a Lewis electron-dot diagram (or diagrams) for the SO₂ molecule.

5) Two Lewis structures can be drawn for the OPF₃ molecule, as shown below.

$$\begin{array}{ccc} \vdots \overset{\cdot}{F} & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{array}$$

Structure 1 Structure 2

a) How many sigma bonds and how many pi bonds are in structure 1?

b) Which one of the two structures best represents a molecule of OPF₃? Justify your answer in terms of formal charge.