Periodicity Homework #2	
1) Define Atomic Radii.	
2) Define Electronegativity.	
3) Define Ionization Energy.	
4) Define Electron Affinity.	
5) Draw a simple periodic table and show the trend in atomic radii.	
6) Draw a simple periodic table and show the trend in electronegativity.	
7) Draw a simple periodic table and show the trend in ionization energy.	
8) Draw a simple periodic table and show the trend in electron affinity.	

9) Why does a cation get smaller after it loses electrons?

10) Why does an ani	ion get bigger after it g	gains electrons'?		
11) Why are the alka	ali metals so reactive?			
12) Why are the Nol	bel gases so un-reactiv	e?		
13) Why does a grou	ap 17 element gain onl	y one electron?		
14) In the following pairs circle the species that is larger:				
Na versus K	He versus Ne	B versus C	Cl versus F	
Br versus I	Na versus Mg	Ar versus K	Li versus Ne	
15) In the following	pairs circle the species	s that is larger:		
Na ⁺ versus Na	F versus F ⁻	O ²⁻ versus F ⁻	Na ⁺ versus F ⁻	
Mg versus Mg ²⁺	F ⁻ versus I ⁻	Al versus Al ³⁺	Cl ⁻ versus F ⁻	
16) In the following	pairs circle the species	s that has the larger ion	ization energy:	
Na versus K	F versus Br	B versus C	Cl versus Ar	
Br versus I	Na versus Mg	Ar versus K	Li versus Ne	
17) In the following	pairs circle the species	s that has the larger elec	etronegativity:	
Na versus K	F versus Br	B versus C	Cl versus Ar	
Br versus I	Na versus Mg	Ar versus K	Li versus Ne	